King Abdulaziz University Department of Mathematics

Academic year 1438-1439 2017-2018

Math 110 "Students Syllabus" / Term(1)

Book: Calculus Metric Version Early Transcendentals by James Stewart 8th edition (No Calculator)

		Lectures			
Chapter Title	Section	Theoretical (Definitions & Theorem)	Examples	Exercises	нพ
S	Appendix A Numbers, Inequalities and Absolute Values	 Intervals (Table). Inequalities Absolute value. Properties (1-6). 	4,7 <mark>Read</mark> 1,2,3,6,8		
endixe	Appendix B Coordinate Geometry and lines	 Slope of line. Point-slope form of the equation of a line. Slope-Intercept form of the equation of a line. Parallel and perpendicular lines. 	4 Read 7,8		
App	Appendix D Trigonometry	 Angles (convert formula). The Trigonometric functions. Trigonometric identities, 6-11, 15. Graphs of the trigonometric functions (sin, cos, tan only) (domain, period of all) (range of sin, cos, tan only). 	1,4	4,33	1-12(odd) 29-34(odd)

	1.1 Four ways to represent a function	 Definitions: Function, Domain and Range. Vertical line test. Piecewise defined functions. Symmetry (odd & even) functions. <u>**</u> Increasing and Decreasing Functions (open or closed intervals are correct) 	2,6,7,8,11 Read 1	9, 31, 33, 34, 38, 40, 49, 76.	7-10,32- 34,41, 46,73-78
dels	1.2 Mathematical Models: A Catalog of essential functions	 Essential functions: Polynomials, power, rational, algebraic, trigonometric, exponential and logarithmic (ln x). Graphs of Functions * 	5,6	2	1
unctions and Mod	1.3 New functions from old functions	 Transformation of functions. i)Vertical and horizontal shifts. ii) Vertical and horizontal reflecting. Combination of functions (f±g, f.g, f/g, Composite Functions) and their domain. <u>Remark:</u> Don't simplify the function f/g before calculating the domain. 	1 (without $y=2\sqrt{x}$), 2, 3(b) add to example (3) Sketch the graph of (c) $y = cosx $ (d) $y = cosx + 3$ (e) $y = cos(x - \frac{\pi}{2})$ Then find the domain and range, 6-9	1(a-f) Add to exercise (1) and solve it for y=e ^x and y=x ² 32	29-39(odd) ,41,47 *try to skech y = cosx - 3 y = 2 + cosx y = sinx y = sinx + 3 Then find the domain and range
ļ	1.4 Exponential Functions	Laws of Exponents.The Number e.	1	2, 13, 19, 20	1,3,17
	1.5 Inverse Functions and Logarithms	 Definition1: (1-1) & horizontal line text. Definition 2: Inverse Functions. How to find the inverse function. Logarithmic functions. Natural logarithm. Graphs and growth of natural logarithm. Inverse of Trigonometric Functions: (sin⁻¹, cos⁻¹, tan⁻¹ only). Table 11 (def. only without domain and range). 	1, 2, Add prove that the function $y=\sqrt[3]{\frac{x+2}{2}}$ is 1-1 "by def." 4, Replace f(x) in example(5) by f(x)= $\sqrt{x-1}$ 7-13 Read 3,6	22, 23, 37(b), 40, 48(a), 51(a,b), 53(a), 57, 64, 68.	21-26(odd) 35-41(odd) 52

	2.2 The Limits of a Functions	 Definition1-6. One-sided limits. Infinite limits: (vertical asymptote). Figure 17. 	1,7-10	9, <u>12,</u> 39, 44	4,7,8,11
derivatives	2.3 Calculating Limits Using the Limits Laws	 The Limits Laws 1-11 Theorem1, 2. The squeezed theorem+ Figure 7. limit of trigonometric function(by theorem)*<u>P.191 relation 2, P.192 relation 3</u> +relations in 'notes in math110'. 	2(a)-9,11 example (8): Let it (T or F) instead of (Show that) <u>P. 195:</u> 5,6	15, 23, 24, 29, 57 p.197: 42, 45, 48, 49, 50, 59	12, 19, 20,22,25, 27, 31, 32,35-37, p. 197: 39
Limits and	2.5 Continuity	 Definition1: Continuity at A number. Definition2: Continuity from the right and from the left. Theorem 4-9. Theorem 10: The intermediate value theorem. 	2(a-c), 6, 8, 9 Read5, 7 example (10): Let it (T or F) instead of (Show that)	3, 45	17, 20, 21, 25, 38, 43
Ch2:	2.6Limits at infinity	 Definition1-3. Theorem 4-6. Infinite limits at infinity. lim_{n→∞} axⁿ if n odd or even. 	1-11	36, 49	19, 30, 35, 37, 50
	2.7 Derivatives and rates of charge	 Tangents. Definition 1, 2. Derivatives. Definition 4, 5. 	1,4,5		
	2.8 The Derivatives as a Function	 Formulas 1, 2. Other Notations. Definition 3, Theorem 4. Higher Derivatives. 	3, 5, 7		29, 55

	3.1 The Derivative of polynomials and exponential function	 Constant functions. Power functions. <u>Definition of normal line P.175.</u> New derivatives from old. Derivative of the natural exponential function. 	1-6, 8	23	3-31(odd), 37
ation	3.2 The product and quotient rules	 The product rule. Quotient rule. 	1-5		3-33(odd)
erentia ules	3.3 Derivatives of Trigonometric Functions	 Formulas 4-6. Derivative of Trigonometric Functions. 	1,2(diff. only), 4-6	21, 42, 45, 48, 49, 50, 59	1-7(odd), 39,51
3: Diff R	3.4 The Chain Rule and Parametric Equations	 The Chain Rule. The power rule combined with the chain rule. Formula 5. 	1, add to example (2) find y'', 3-9	23, 53	1-15(odd), 44, 47, 48
С	3.5 Implicit Differentiation	 Derivatives of Inverse Trigonometric Functions. 	1, 2(a,b), 3-5,	12, 25	5-11(odd), 35, 37, 49, 55
	3.6 Derivatives of Logarithmic Functions	 Formulas 1-4. Logarithmic differentiation. 	1-8	19, 52	3-15(odd), 21, 31, 43-47
Ch4: Applica	4.1 Maximum and Minimum Values	 Definition 1, 2 Extreme Value Theorem. Definition 6 (Critical Number). Formula 7. The closed Interval Method. 	4, 7, 8 <mark>Read</mark> 2, 3	4	5,29,47,53
tions of Differe ntiation	4.3 How derivatives affect the shape of a graph	 Increasing/decreasing test The First derivative Test Definition: (concavity) + Concavity test. Definition: inflection point Second derivative test 	1,2,6 <mark>Read</mark> 7	1, 9 12	9,19

* The graphs that students must Know:	** Trigonometric function	<mark>ns (odd & even)</mark> :
Y = sin x, y = cos x, y = tan x	Even	Odd
Y=x, y= x , y= \sqrt{x} , $\sqrt[3]{x}$, $\sqrt[4]{x}$, $\sqrt[5]{x}$, Y=x ² , (and similarly y=x ⁴ , y=x ⁶ ,etc)	cos x	sin x
$Y = x^3$, (and similarly $y = x^5$, $y = x^7$,etc)	sec x	csc x
$Y = \frac{1}{x}$, (and similarly $Y = \frac{1}{x^3}$, $Y = \frac{1}{x^5}$ etc)		tan x
$Y = \frac{1}{x^2}$, (and similarly $Y = \frac{1}{x^4}$, $Y = \frac{1}{x^6}$ etc)		cot x
Exponential function, logarithmic function.		

Marks distribution:-

	First Exam	Second Exam	Final Exam	
Time ; marks	120 min; 30 marks	120 min; 30 marks	120 min; 40 marks	Total: 100

oto.
ULE

✓ Appendices A&B are not included in the exams.

✓ See the **workshop** at <u>hashoaib.kau.edu.sa</u>