Math 110 "Students Syllabus" / Term(1)

Book: Calculus Metric Version Early Transcendentals by James Stewart 8th edition (No Calculator)

		Lectures			
Chapter Title	Section	Theoretical (Definitions \& Theorem)	Examples	Exercises	HW
	Appendix A Numbers, Inequalities and Absolute Values	- Intervals (Table). - Inequalities - Absolute value. - Properties (1-6).	$\begin{gathered} 4,7 \\ \text { Read } 1,2,3,6,8 \end{gathered}$		
	Appendix B Coordinate Geometry and lines	- Slope of line. - Point-slope form of the equation of a line. - Slope-Intercept form of the equation of a line. - Parallel and perpendicular lines.	$\stackrel{4}{\text { Read } 7,8}$		
	Appendix D Trigonometry	- Angles (convert formula). - The Trigonometric functions. - Trigonometric identities, 6-11, 15. - Graphs of the trigonometric functions (sin, cos, tan only) (domain, period of all) (range of sin, cos, tan only).	1,4	4,33	$\begin{aligned} & 1-12 \text { (odd) } \\ & 29-34(\text { odd }) \end{aligned}$

$\begin{aligned} & \boldsymbol{0} \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	1.1 Four ways to represent a function	- Definitions: Function, Domain and Range. - Vertical line test. - Piecewise defined functions. - Symmetry (odd \& even) functions. \qquad - Increasing and Decreasing Functions_(open or closed intervals are correct)	$\begin{gathered} 2,6,7,8,11 \\ \text { Read } 1 \end{gathered}$	$\begin{gathered} 9,31,33, \\ 34,38, \\ 40,49, \\ 76 . \end{gathered}$	$\begin{aligned} & \text { 7-10,32- } \\ & 34,41, \\ & 46,73-78 \end{aligned}$
	1.2 Mathematical Models: A Catalog of essential functions	- Essential functions: Polynomials, power, rational, algebraic, trigonometric, exponential and logarithmic $(\ln x)$. - Graphs of Functions	5,6	2	1
	1.3 New functions from old functions	- Transformation of functions. i) Vertical and horizontal shifts. ii) Vertical and horizontal reflecting. - Combination of functions ($f \pm g, f . g, f / g$, Composite Functions) and their domain. Remark: Don't simplify the function f / g before calculating the domain.	1 (without $y=2 \sqrt{x}), 2$, 3(b) add to example (3) Sketch the graph of (c) $y=\|\cos x\|$ (d) $y=\|\cos x\|+3$ (e) $y=\cos \left(x-\frac{\pi}{2}\right)$ Then find the domain and range, 6-9	1(a-f) Add to exercise (1) and solve it for $y=e^{x}$ and $y=x^{2}$ 32	29-39(odd) ,41,47 *try to skech $\begin{gathered} y=\cos x-3 \\ y=2+\cos x \\ y=\|\sin x\| \\ y=\|\sin x\|+3 \end{gathered}$ Then find the domain and range
프를	1.4 Exponential Functions	- Laws of Exponents. - The Number e.	1	$\begin{gathered} 2,13,19, \\ 20 \end{gathered}$	1,3,17
$\underset{v}{\smile}$	1.5 Inverse Functions and Logarithms	- Definition1: (1-1) \& horizontal line text. Definition 2: Inverse Functions. How to find the inverse function. Logarithmic functions. Natural logarithm. Graphs and growth of natural logarithm. Inverse of Trigonometric Functions: ($\sin ^{-1}, \cos ^{-1}$, tan $^{-1}$ only). - Table 11 (def. only without domain and range).	1, 2, Add prove that the function $y=\sqrt[3]{\frac{x+2}{2}} \text { is } 1-1$ "by def." 4, Replace f(x) in example(5) by $\begin{gathered} f(x)=\sqrt{x-1} \\ 7-13 \end{gathered}$ Read 3,6	$\begin{gathered} \text { 22, 23, } \\ 37(b), 40, \\ 48(a), \\ 51(a, b), \\ 53(a), \\ 57,64, \\ 68 . \end{gathered}$	$\begin{gathered} 21-26 \text { (odd) } \\ 35-41 \text { (odd) } \\ 52 \end{gathered}$

	2.2 The Limits of a Functions	- Definition1-6. - One-sided limits. - Infinite limits: (vertical asymptote). - Figure 17.	1,7-10	$\begin{aligned} & 9,12 r \\ & 39,44 \end{aligned}$	4,7,8,11
	2.3 Calculating Limits Using the Limits Laws	- The Limits Laws 1-11 - Theorem1, 2. - The squeezed theorem+ Figure 7. - limit of trigonometric function(by theorem)*P. 191 relation 2, P. 192 relation 3 +relations in 'notes in math110'.	$\begin{gathered} \text { 2(a)-9,11 } \\ \text { example (8): Let } \\ \text { it (T or F) } \\ \text { instead of (Show } \\ \text { that) } \\ \text { P. 195: 5,6 } \end{gathered}$	$\begin{gathered} \text { 15, 23, } \\ 24,29,57 \\ \text { p.197: } \\ 42,45, \\ 48,49, \\ 50,59 \end{gathered}$	$\begin{gathered} \text { 12,19, } \\ \text { 20,22,25, } \\ 27,31, \\ 32,35-37, \\ \text { p. 197: } 39 \end{gathered}$
	2.5 Continuity	- Definition1: Continuity at A number. - Definition2: Continuity from the right and from the left. - Theorem 4-9. - Theorem 10: The intermediate value theorem.	2(a-c), 6, 8, 9 Read5, 7 example (10): Let it (T or F) instead of (Show that)	3,45	$\begin{aligned} & \text { 17, 20, 21, } \\ & 25,38,43 \end{aligned}$
	2.6Limits at infinity	- Definition1-3. - Theorem 4-6. - Infinite limits at infinity. - $\lim _{n \rightarrow \infty} a x^{n}$ if \mathbf{n} odd or even.	1-11	36,49	$\begin{gathered} 19,30,35, \\ 37,50 \end{gathered}$
	2.7 Derivatives and rates of charge	- Tangents. - Definition 1, 2. - Derivatives. - Definition 4, 5 .	1,4,5		
	2.8 The Derivatives as a Function	- Formulas 1, 2. - Other Notations. - Definition 3, Theorem 4. - Higher Derivatives.	3, 5, 7		29, 55

	3.1 The Derivative of polynomials and exponential function	- Constant functions. - Power functions. - Definition of normal line P. 175. - New derivatives from old. - Derivative of the natural exponential function.	1-6, 8	23	$\begin{gathered} \text { 3-31(odd), } \\ 37 \end{gathered}$
	3.2 The product and quotient rules	- The product rule. - Quotient rule.	1-5		3-33(odd)
	3.3 Derivatives of Trigonometric Functions	- Formulas 4-6. - Derivative of Trigonometric Functions.	$\begin{gathered} \text { 1,2(diff. only), } \\ 4-6 \end{gathered}$		$\begin{gathered} 1-7 \text { (odd), } \\ 39,51 \end{gathered}$
	3.4 The Chain Rule and Parametric Equations	- The Chain Rule. - The power rule combined with the chain rule. - Formula 5.	1, add to example (2) find $y^{\prime \prime}, 3-9$	23, 53	$\begin{aligned} & \text { 1-15(odd), } \\ & 44,47,48 \end{aligned}$
	3.5 Implicit Differentiation	- Derivatives of Inverse Trigonometric Functions.	1, 2(a,b), 3-5,	12, 25	$\begin{aligned} & \text { 5-11(odd), } \\ & 35,37,49, \\ & 55 \end{aligned}$
	3.6 Derivatives of Logarithmic Functions	- Formulas 1-4. - Logarithmic differentiation.	1-8	19, 52	$\begin{gathered} \text { 3-15(odd), } \\ 21,31, \\ 43-47 \\ \hline \end{gathered}$
Ch4: Applica tions of Differe ntiation	4.1 Maximum and Minimum Values	- Definition 1, 2 - Extreme Value Theorem. - Definition 6 (Critical Number). - Formula 7. - The closed Interval Method.	$\begin{gathered} \text { 4, 7, } 8 \\ \text { Read2, } 3 \end{gathered}$	4	5,29,47,53
	4.3 How derivatives affect the shape of a graph	- Increasing/decreasing test - The First derivative Test - Definition: (concavity) + Concavity test. - Definition: inflection point - Second derivative test	$\begin{aligned} & \text { 1,2,6 } \\ & \text { Read7 } \end{aligned}$	$\begin{gathered} 1,9 \\ 12 \end{gathered}$	9,19

* The graphs that students must Know:

$\mathrm{Y}=\sin x, \mathrm{y}=\cos x, \mathrm{y}=\tan x$

$\mathbf{Y}=\mathbf{x}, \mathrm{y}=|\mathrm{x}|, \mathrm{y}=\sqrt{x}, \sqrt[3]{x}, \sqrt[4]{x}, \sqrt[5]{x}, \ldots$
$\mathbf{Y}=\mathrm{x}^{2}$, (and similarly $\mathrm{y}=\mathrm{x}^{4}, \mathrm{y}=\mathrm{x}^{6}$, ...etc)
$Y=x^{3}$, (and similarly $y=x^{5}, y=x^{7}, \ldots e t c$)
$\mathrm{Y}=\frac{1}{x}, \quad$ (and similarly $\mathrm{Y}=\frac{1}{x^{3}}, \mathrm{Y}=\frac{1}{x^{5}} \ldots$ etc)
$\mathbf{Y}=\frac{1}{x^{2}}$, (and similarly $\mathbf{Y}=\frac{1}{x^{4}}, Y=\frac{1}{x^{6}} \ldots$ etc)
Exponential function, logarithmic function.
** Trigonometric functions (odd \& even):

Even	Odd
$\cos x$	$\sin x$
$\sec x$	$\csc x$
	$\tan x$
	$\cot x$

Marks distribution:-

	First Exam	Second Exam	Final Exam	
Time ; marks	$\mathbf{1 2 0} \mathbf{~ m i n} ; \mathbf{3 0}$ marks	$\mathbf{1 2 0} \mathbf{~ m i n} ; \mathbf{3 0}$ marks	$\mathbf{1 2 0} \mathbf{~ m i n} ; \mathbf{4 0}$ marks	Total: $\mathbf{1 0 0}$

\checkmark Appendices A\&B are not included in the exams.
\checkmark See the workshop at hashoaib.kau.edu.sa

